翻訳と辞書
Words near each other
・ Reflex anal dilation
・ Reflex arc
・ Reflex asystolic syncope
・ Reflection formula
・ Reflection group
・ Reflection high-energy electron diffraction
・ Reflection lines
・ Reflection loss
・ Reflection map
・ Reflection mapping
・ Reflection nebula
・ Reflection of Joey's Live
・ Reflection of Something
・ Reflection principle
・ Reflection principle (disambiguation)
Reflection principle (Wiener process)
・ Reflection Riding Arboretum and Botanical Garden
・ Reflection seismology
・ Reflection symmetry
・ Reflection theorem
・ Reflectional receiver
・ Reflections
・ Reflections (1984 film)
・ Reflections (1987 film)
・ Reflections (1999 film)
・ Reflections (2005 film)
・ Reflections (A Retrospective)
・ Reflections (After 7 album)
・ Reflections (Akira Terao album)
・ Reflections (Andy Williams album)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Reflection principle (Wiener process) : ウィキペディア英語版
Reflection principle (Wiener process)

In the theory of probability for stochastic processes, the reflection principle for a Wiener process states that if the path of a Wiener process ''f''(''t'') reaches a value ''f''(''s'') = ''a'' at time ''t'' = ''s'', then the subsequent path after time ''s'' has the same distribution as the reflection of the subsequent path about the value ''a''. More formally, the reflection principle refers to a lemma concerning the distribution of the supremum of the Wiener process, or Brownian motion. The result relates the distribution of the supremum of Brownian motion up to time ''t'' to the distribution of the process at time ''t''. It is a corollary of the strong Markov property of Brownian motion.
==Statement==
If (W(t): t \geq 0) is a Wiener process, and a > 0 is a threshold (also called a crossing point), then the lemma states:
: \mathbb \left(\sup_ W(s) \geq a \right) = 2\mathbb(W(t) \geq a)
In a stronger form, the reflection principle says that if \tau is a stopping time then the reflection of the Wiener process starting at \tau , denoted (W^\tau(t): t \geq 0), is also a Wiener process, where:
: W^\tau(t) = W(t)\chi_\left\ + (2W(\tau) - W(t))\chi_\left\
The stronger form implies the original lemma by choosing \tau = \inf\left\.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Reflection principle (Wiener process)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.